

Pathogen: Using Campaign Intent To Guide Onboard Planning for a Self-Reliant Rover

Joseph A. Russino, Daniel Gaines, Steve Schaffer, and Vincent Wong

joseph.a.russino@jpl.nasa.gov

CL#19-3435

Portions of this work were performed by the Jet Pro Lion Laboratory, California Institute of Technology, under contral with the National Aeronautics and Space Administration.

© 2019, California Institute of Technology. All Rights Reserved.

- Introduction
 - Self-Reliant Rovers
 - Campaign Intent
- Problem Definition
- Pathogen: Using Campaign Intent to Guide Planning
- Evaluations
 - Onboard Planning Evaluation
 - System Evaluation: Mars Yard Walkabout Campaign
- Demonstration Video

- Introduction
 - Self-Reliant Rovers
 - Campaign Intent
- Problem Definition
- Pathogen: Using Campaign Intent to Guide Planning
- Evaluations
 - Onboard Planning Evaluation
 - System Evaluation: Mars Yard Walkabout Campaign
- Demonstration Video

- Introduction
 - Self-Reliant Rovers
 - Campaign Intent
- Problem Definition
- Pathogen: Using Campaign Intent to Guide Planning
- Evaluations
 - Onboard Planning Evaluation
 - System Evaluation: Mars Yard Walkabout Campaign
- Demonstration Video

- Introduction
 - Self-Reliant Rovers
 - Campaign Intent
- Problem Definition
- Pathogen: Using Campaign Intent to Guide Planning
- Evaluations
 - Onboard Planning Evaluation
 - System Evaluation: Mars Yard Walkabout Campaign
- Demonstration Video

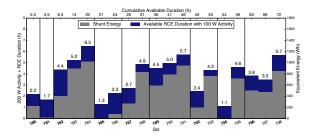
- Introduction
 - Self-Reliant Rovers
 - Campaign Intent
- Problem Definition
- Pathogen: Using Campaign Intent to Guide Planning
- Evaluations
 - Onboard Planning Evaluation
 - System Evaluation: Mars Yard Walkabout Campaign
- Demonstration Video

- Introduction
 - Self-Reliant Rovers
 - Campaign Intent
- Problem Definition
- Pathogen: Using Campaign Intent to Guide Planning
- Evaluations
 - Onboard Planning Evaluation
 - System Evaluation: Mars Yard Walkabout Campaign
- Demonstration Video

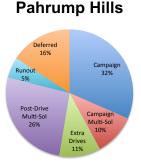
- Introduction
 - Self-Reliant Rovers
 - Campaign Intent
- Problem Definition
- Pathogen: Using Campaign Intent to Guide Planning
- Evaluations
 - Onboard Planning Evaluation
 - System Evaluation: Mars Yard Walkabout Campaign
- Demonstration Video

- Introduction
 - Self-Reliant Rovers
 - Campaign Intent
- Problem Definition
- Pathogen: Using Campaign Intent to Guide Planning
- Evaluations
 - Onboard Planning Evaluation
 - System Evaluation: Mars Yard Walkabout Campaign
- Demonstration Video

- Introduction
 - Self-Reliant Rovers
 - Campaign Intent
- Problem Definition
- Pathogen: Using Campaign Intent to Guide Planning
- Evaluations
 - Onboard Planning Evaluation
 - System Evaluation: Mars Yard Walkabout Campaign
- Demonstration Video


- Introduction
 - Self-Reliant Rovers
 - Campaign Intent
- Problem Definition
- Pathogen: Using Campaign Intent to Guide Planning
- Evaluations
 - Onboard Planning Evaluation
 - System Evaluation: Mars Yard Walkabout Campaign
- Demonstration Video

Introduction

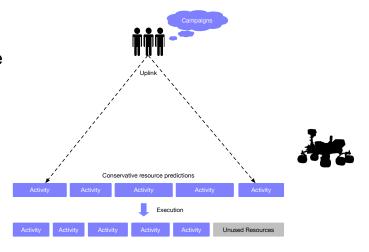

Motivation – MSL Case Study

- Large percentage of sols not making significant contributions to campaign
 - 48% low productivity sols
- Significant amount of unused vehicle resources

Pahrump Hills Estimate of Extra Available Duration

•

- Opportunity exists to increase productivity
 - Sols within campaign not providing significant contribution to objectives
 - Unused vehicle resources
- Significant challenges to overcome
 - Predicting available vehicle resources
 - Can unnecessarily limit activity
 - Ground-in-the-loop requirements for target selection and effective drive planning
 - Ground unable to productively fill "restricted" sols following drives
 - Ground-in-the-loop requirements to respond to outcome of activity
 - E.g. drive faults


Campaign Intent for Operator Guidance

Challenge:

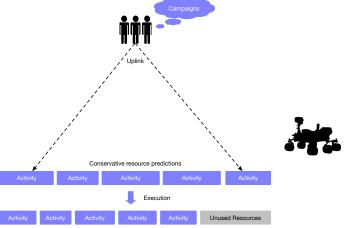
 Enable operators to guide rover without detailed knowledge of vehicle state

Approach:

- Leverage concepts from rover operations
- Campaign Intent: Express higher level strategic guidance
 - Specifies relationships among objectives
 - Directs use of autonomous science

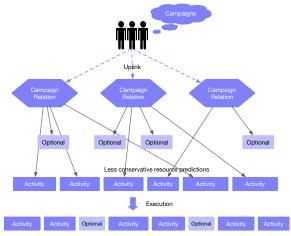
Current operations

- · Detailed planning on the ground
- Conservative resource allocations to avoid oversubscription
- No onboard knowledge of relationships among activities
- · Results in unused vehicle resources


Campaign Intent for Operator Guidance

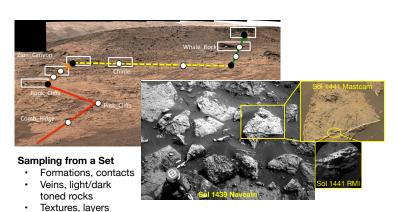
Challenge:

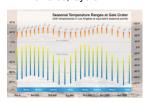
 Enable operators to guide rover without detailed knowledge of vehicle state


Approach:

- Leverage concepts from rover operations
- Campaign Intent: Express higher level strategic guidance
 - Specifies relationships among objectives
 - Directs use of autonomous science

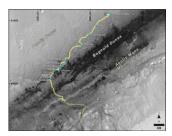
Current operations

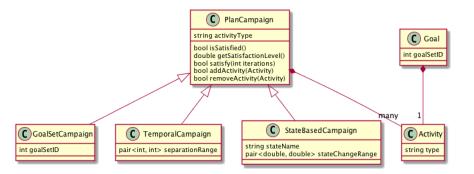

- Detailed planning on the ground
- Conservative resource allocations to avoid oversubscription
- No onboard knowledge of relationships among activities
- Results in unused vehicle resources



SRR approach

- · Onboard planning, resource management
- Less conservative modeling, oversubscribe vehicle
- Campaign intent expresses relations among activities
- · Results in increased resource use


Campaign Intent


Temporally-Periodic Sampling

- Across diurnal cycle
- Over seasons
- Periodic vehicle maintenance

State-Based Sampling

- Drilling at varying elevations
- Surveys over rover traverse

Goal Set Campaign

- Activities scheduled from a defined group
- Value is a function of number achieved within group

Temporal Campaign

- Activities scheduled based on temporal separation preferences
- Value is a function on compliance with requested cadence

State-Based Campaign

- Activities scheduled based on state-change separation preferences
- Value is a function on compliance with requested separation

Problem Definition

- Inputs:
 - Goals
 - Priority, Utility
 - Campaigns
 - Exogenous Activities
 - Constraints

- Outputs:
 - Sequence of activities

- Goals:
 - Maximize utility
 - Comply with engineering constraints
 - Execute in real-time on rover hardware
 - Provide best plan available within allotted time (anytime)

Pathogen: Using Campaign Intent To Guide Planning

Algorithm

Result: Valid plan Generate seed nodes while ! Done do

Pick best pending node Expand that node Update pending nodes

end

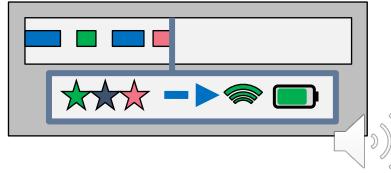
Pick best pending node

Result: Valid plan Generate seed nodes

while ! Done do

Pick best pending node Expand that node Update pending nodes

Pick best pending node


Pathogen: Using Campaign Intent To Guide Planning

Seed Nodes

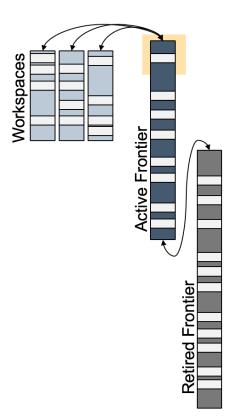
- Action Plan
 - Drives, goals, comms, sleeps, preheats, ...
- Forward sweeping "current" state
 - Time, location, resources
 - In-progress drives / interrupts
 - Campaign, goal statuses
 - Heating state

Scores

- Past utility + heuristic future utility
 - Aggregated from all goals
- Organized by strict priority
- Conflicts weighted negative

Result: Valid plan Generate seed nodes while ! Done do

Pick best pending node Expand that node


Update pending nodes

Pick best pending node

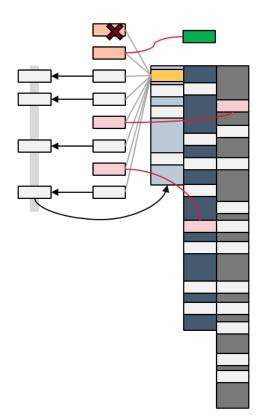
Pathogen: Using Campaign Intent To Guide Planning

Node Expansion

- Per-thread workspace frontier
 - Grows in depth-first bursts
 - Merged back to main frontier
- Active frontier repository
 - Sorted by heuristic value
 - Threads check out / merge work
 - Limited size for efficiency
- Retired frontier nodes
 - Collects least-promising nodes
 - Called back to active frontier as needed

Result: Valid plan Generate seed nodes while ! Done do

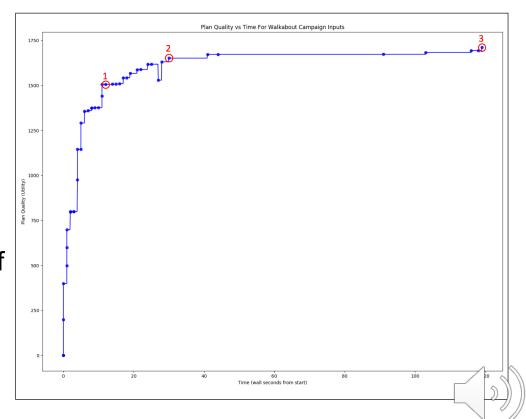
Pick best pending node Expand that node

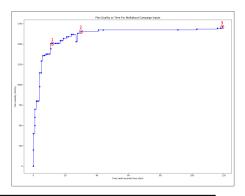

Update pending nodes

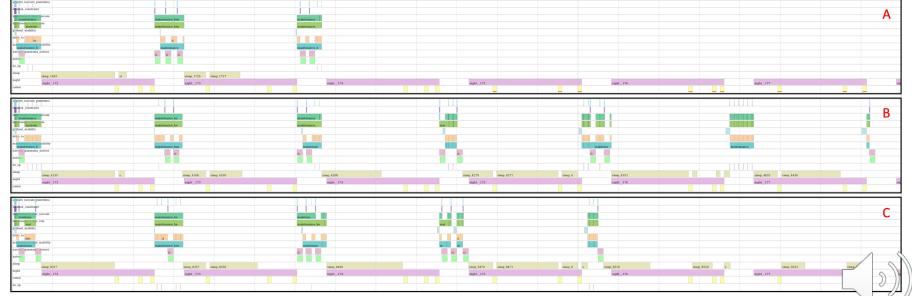
Pick best pending node

Pathogen: Using Campaign Intent To Guide Planning

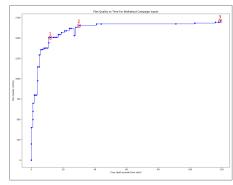
Successor Generation

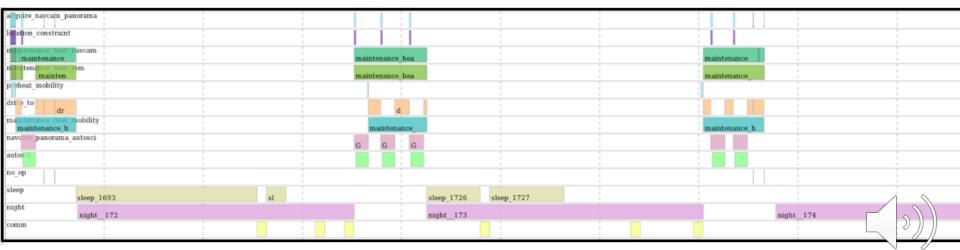

- Check if prunable
 - Conflicts
 - Max can't beat best node
- Create successor nodes
- Score them
- Prune any poor children
- De-duplicate versus examined nodes
 - Uses hash function on plan
- Update best node metrics
- Push into workspace / frontier



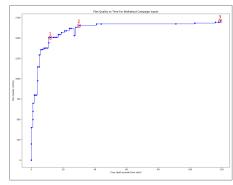


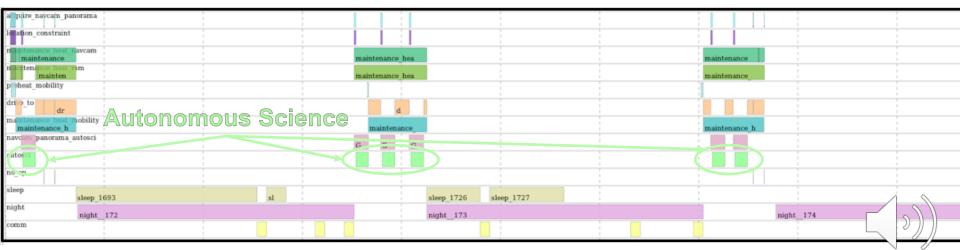
Plan quality

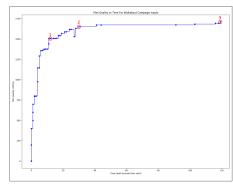

- Generate acceptable plans quickly
- Take full advantage of time available for planning
- Return highest-quality plan possible for a given amount of planning time

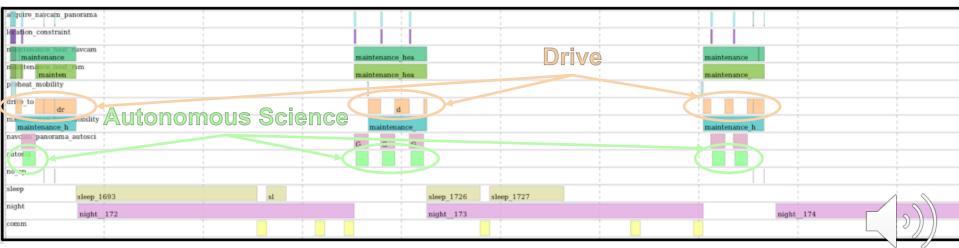


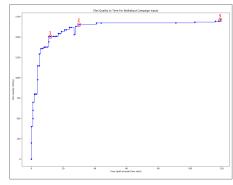


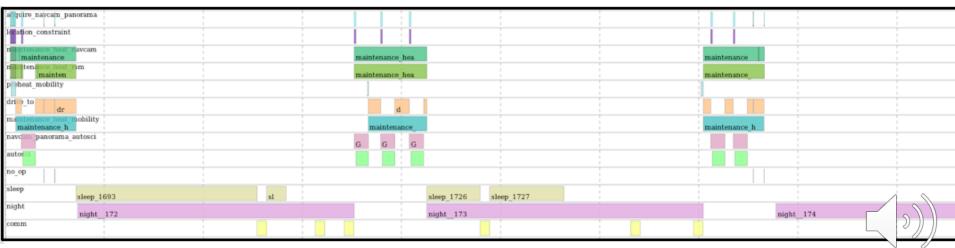


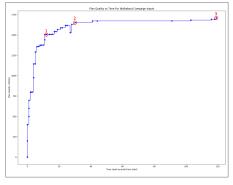


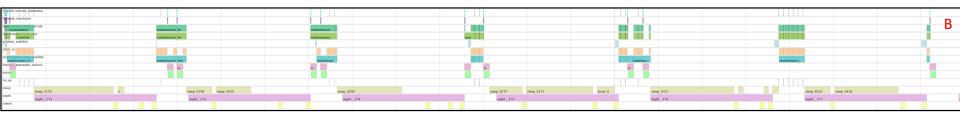




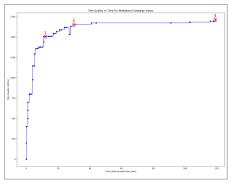


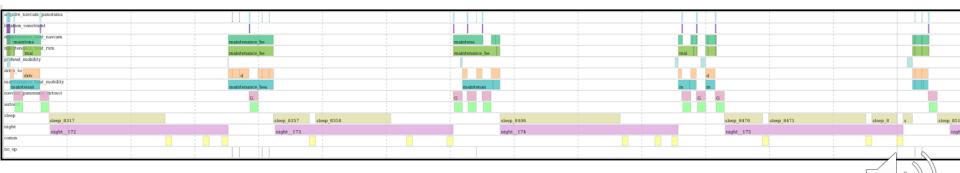






After ~30
 seconds: finds
 plan that
 accomplishes all
 goals in 7 sols





 After 2 minutes: finds plan that accomplishes all goals in only 5 sols

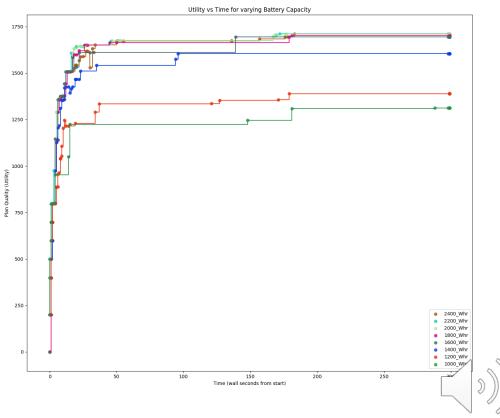
 Higher-utility goals given priority when resources are limited

Label	Target Name	Target Utility	
Α	Zoot	100	
В	Sweetums	200	
С	Fozzie	100	
D	Janice	100	
E	Animal	100	
F	DrJulius Strangepork	200	

 Higher-utility goals given priority when resources are limited

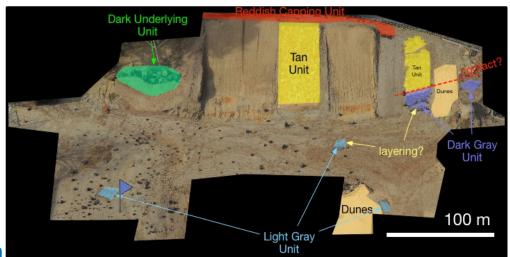
Label	Target Name	Target Utility	
Α	Zoot	100	
В	Sweetums	200	
С	Fozzie	100	
D	Janice	100	

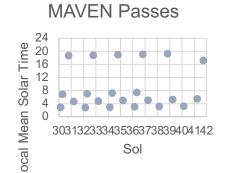
 Higher-utility goals given priority when resources are limited

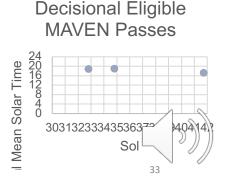

Label	Target Name	Target Utility	
Α	Zoot	100	
В	Sweetums	200	
С	Fozzie	100	
D	Janice	100	
E	Animal	100	
F	DrJulius Strangepork	200	

Constraints

 Able to produce productive plans in when energy resources are tightly constrained


Battery Capacity (Whr)	# Goals Achieved
1000	5
1200	7
1400	9
1600	10
1800	10
2000	10
2200	10
2400	10



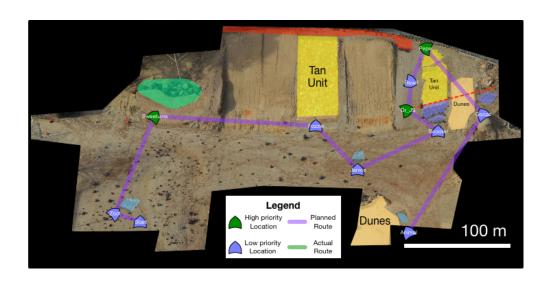

Evaluation: Mars Yard Walkabout

Objective:

- Evaluate ability to enable high productivity with limited communication
- Methodology
 - Walkabout campaign using SRR
 - Create geological scenes in Mars Yard
 - Use Maven-like comm windows
 - MSL scientists conducted campaign
 - Diana Blaney, Abigail Fraeman, Vivian Sun
 - 7 sols to complete walkabout with 3 uplink opportunities
 - Compared SRR performance with projected MSL performance

Scientist Objectives and Initial Plan

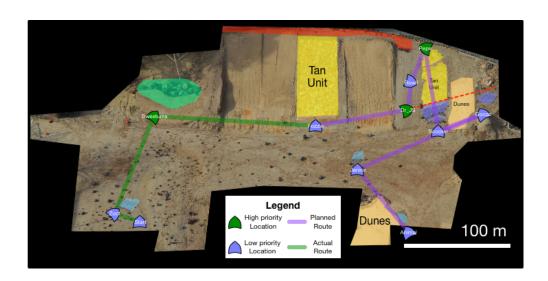
		Num Follow-Ups	Num Follow-	
Location	Detector	Min	Max	Priority
	Light Gray			
Zoot	Outcrop	2	4	High
Zoot	Layering	3	4	Normal
	Dark Gray			
Zoot	Outcrop	2	4	Normal
	Dark Gray			
Sweetums	Outcrop	2	4	High
Sweetums	Dark Rock	2	4	High
	Contact			
Sweetums	(Dark/Tan)	2	4	Normal
Fozzie	Tan Outcrop	2	3	Normal
Fozzie	Layering	2	4	High
	Contact			
Fozzie	(Dark/Tan)	2	3	Normal
	Reddish			
Fozzie	Rock	1	2	Normal
	Light Gray			
Janice	Outcrop	2		High
Janice	Layering	3	4	Normal
	Dark Gray			
Janice	Outcrop	2	4	Normal
	Contact			
DrJuliasStrangepork	(Dark/Tan)	2		High
DrJuliasStrangepork	Layering	2	4	High
	Dark Gray			
DrJuliasStrangepork	Outcrop	1	_	Normal
DrJuliasStrangepork	Tan Outcrop	1	2	Normal


		Num	Num	
		Follow-Ups	-	
Location	Detector	Min	Max	Priority
Rowlf	Layering	3	6	Normal
Rowlf	Tan Outcrop	3	6	Normal
Pepe	Reddish Rock	2	4	Normal
	Contact	2		
	(Dark/Tan)	2		High
	Layering	2		Normal
	Sand	2	3	High
	Contact (Dark/Tan)	2	4	High
	Layering	2	3	Normal
	Dark Gray			
Gonzo	Outcrop	2	2	Normal
	Dark Gray			
Scooter	Outcrop	2	4	High
Scooter	Layering	1	2	Normal
	Contact			
Scooter	(Dark/Tan)	1	2	Normal
Scooter	Dark Rock	2	4	Normal
	Light Gray			
Animal	Outcrop	2	4	High
Animal	Layering	3	4	Normal
	Dark Gray			
Animal	Outcrop	2	4	Normal

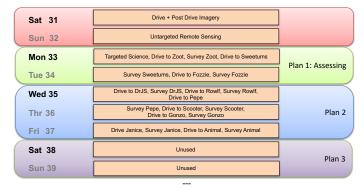
2018-10-15

Results

Sat 31 Drive + Post Drive Imagery Assessing Untargeted Remote Sensing Sun 32 Mon 33 Targeted Science, Drive to Zoot, Survey Zoot, Drive toward Sweetums Plan 1 Tue 34 Arrive at Sweetums, Survey Sweetums, Drive to Fozzie Wed 35 Arrive at Scooter, Survey Scooter, Drive to DrJS, Survey DrJS, Drive to Thr 36 Plan 2 Rowlf, Survey Rowlf Drive to Pepe, Survey Pepe, Drive to Gonzo, Survey Gonzo, Drive Fri 37 Sat 38 Survey Animal

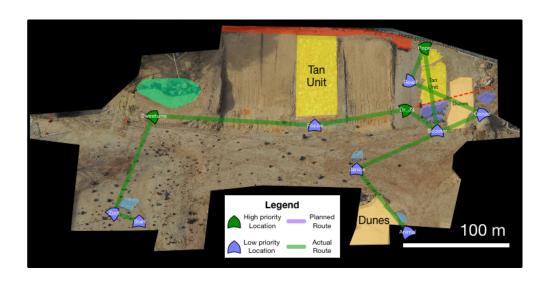

Unused

Sol Path from Initial Plan


Plan 3

Sun 39

Results



Sol Path after Plan 1 Execution

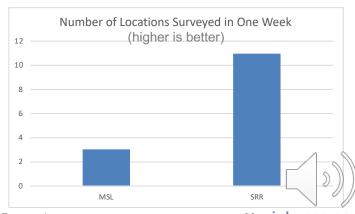


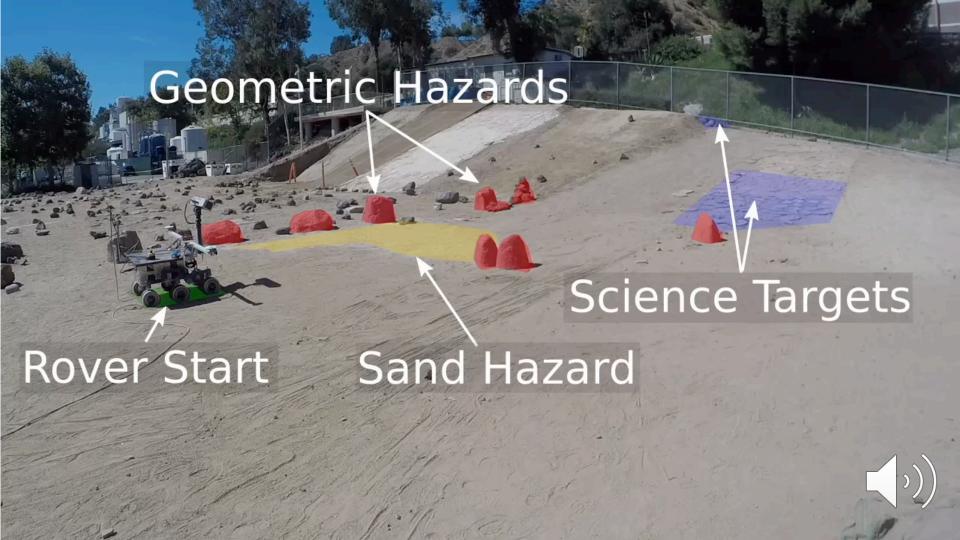
Results

Sol Path after Plan 2 Execution



Campaign


Results MSL SRR


Post-Drive Multi-Sol 25%

Campaign 43%

- SRR productivity vs. MSL
 - 47% increase in number of productive sols
 - SRR able to make full use of every sol
 - 80% (4.7x) reduction in number of sols to survey all locations
 - 267% (3.7x) increase in locations surveyed in one week

Self-Reliant Rover Team

- Dan Gaines (PI)
- Ryan Mackey (Co-I)
- Gregg Rabideau (Co-I)
- Ashwin Vasavada (Co-I)
- **Bob Anderson**
- Ali Agha
- Gary Doran
- Chet Joswig
- Heather Justice
- Ksenia Kolcio (Okean)

- Mike Paton
- Brandon Rothrock
- Joe Russino
- Jacek Sawoniewicz
- Steve Schaffer
- Vincent Wong
- Kathryn Yu

Advisors

- Issa Nesnas (Initiative Lead)
- Magdy Bareh
- Lorraine Fesq
- Mark Maimone

jpl.nasa.gov

